defwrite(profiles,base_dir,verbose):""" Writing method for an instance of a (aprofiles.profiles.ProfilesData): class. Args: profiles (aprofiles.profiles.ProfilesData): Object to be written. base_dir (str): Base path of the file should be written. verbose (bool): Verbose mode. """def_classify_scene(ds):lowest_clouds=profiles._get_lowest_clouds()scene=[]# got clouds classification here: https://www.metoffice.gov.uk/weather/learn-about/weather/types-of-weather/cloudsfori,lowest_cloudinenumerate(lowest_clouds):iflowest_cloud<=1981:scene.append(3)eliflowest_cloud>1981andlowest_cloud<=6096:scene.append(2)eliflowest_cloud>6096:scene.append(1)else:scene.append(0)# overwrite result based on focifds.foc.data[i]:scene[i]=4returnscenedef_classify_retrieval_scene(ds):lowest_clouds=profiles._get_lowest_clouds()z_ref=profiles.data.z_ref.datascene=[]fori,_inenumerate(lowest_clouds):iflowest_clouds[i]>z_ref[i]:scene.append(1)eliflowest_clouds[i]<z_ref[i]:scene.append(3)else:scene.append(0)# overwrite result based on focifds.foc.data[i]:scene[i]=4returnscene# get dataset from profilesdatads=profiles.data# get date as string yyyy-mm-dd from first value of the time datastr_date=str(ds.time.values[0])[:10]yyyy=str_date[:4]mm=str_date[5:7]dd=str_date[8:10]filename=f"AP_{ds.wigos_station_id}-{ds.instrument_id}-{str_date}.nc"path=os.path.join(base_dir,yyyy,mm,dd,filename)ifutils.file_exists(path)andverbose:warnings.warn(f"{path} already exists and will be overwritten.")else:frompathlibimportPathPath(base_dir,yyyy,mm,dd).mkdir(parents=True,exist_ok=True)# creates a copy od original dataset -> writes only necessary datads_towrite=copy.deepcopy(ds)# for the mass concentration, we just need the mec.mec={}fordata_varinlist(ds_towrite.data_vars):if"mass_concentration:"indata_var:mec[data_var.split(":")[1]]=ds[data_var].mecds_towrite=ds_towrite.drop(data_var)# add mec as new dataarrayds_towrite["mec"]=xr.DataArray(data=list(mec.values()),dims=["aer_type"],coords=dict(aer_type=list(mec.keys()),),attrs=dict(long_name="Mass to Extinction Coefficient",units="m2.g-1",wavelength=ds.l0_wavelength.data,),)# add attributes to aer_typeds_towrite["aer_type"]=ds_towrite["aer_type"].assign_attrs({"long_name":"Aerosol type"})# determines the scene classification for each profilescene=_classify_scene(ds_towrite)# add scene as new dataarrayds_towrite["scene"]=("time",scene)ds_towrite["scene"]=ds_towrite["scene"].assign_attrs({"long_name":"Scene classification","definition":"0: aer (aerosols only) / 1: high_cloud (base cloud above 6096 m) / 2: mid_cloud (base cloud between 1981 m and 6096 m) / 3: low-cloud (base cloud below 1981 m) - 4: foc (fog or condensation)",})# add scene for extinction profile: cloud_above, cloud_belowretrieval_scene=_classify_retrieval_scene(ds_towrite)# add scene as new dataarrayds_towrite["retrieval_scene"]=("time",retrieval_scene)ds_towrite["retrieval_scene"]=ds_towrite["retrieval_scene"].assign_attrs({"long_name":"Retrieval scene classification","definition":"0: aer (aerosols only) / 1: cloud_above (cloud above reference altitude) / 3: cloud_below (cloud below reference point) / 4: foc (fog or condensation)",})# drop other variablesdrop_variables=["start_time","vertical_visibility","cbh_uncertainties","uncertainties_att_backscatter_0",]fordrop_varindrop_variables:ds_towrite=ds_towrite.drop(drop_var)# some variables have no dimension. Set it as attribute and drop the variable.nodim_variables=["l0_wavelength"]fornodim_varinnodim_variables:ds_towrite.attrs[nodim_var]=ds_towrite[nodim_var].datads_towrite=ds_towrite.drop(nodim_var)# for convenience, add initial coordinates of stationcoordinates_vars=["station_altitude","station_latitude","station_longitude"]forcoordinate_varincoordinates_vars:ds_towrite.attrs[f"{coordinate_var}_t0"]=ds_towrite[coordinate_var].data[0]# add altitude directionds_towrite["altitude"]=ds_towrite["altitude"].assign_attrs({"positive":"up"})# encoding with compressionencoding={}forvarname,varinds_towrite.variables.items():ifvarname=="time":continueifvar.dtype==np.int64:encoding[varname]={"dtype":np.int32,"zlib":True,"chunksizes":var.shape,}ifvarnamein["extinction","clouds"]:encoding[varname]={"zlib":True,"chunksizes":var.shape}# convert also the quality_flag's variable flag_values attribute also to NC_INT instead of NC_INT64ds_towrite["quality_flag"]=ds_towrite.quality_flag.assign_attrs({"flag_values":np.array([0,1,2],dtype=np.int32)})# writes to netcdf# ds_towrite.to_netcdf(path, mode="w", encoding=encoding)ds_towrite.to_netcdf(path,mode="w")